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INTRODUCTION

Mercury intrusion porosimetry is one of only a few analytical techniques that permits an analyst to
acquire data over such a broad dynamic range using a single theoretical model. Mercury
porosimetry routinely is applied over a capillary diameter range from 0.003 um to 360 um—five
orders of magnitude! Thisis equivalent to using the same tool to measure with accuracy and preci-
sion the diameter of a grain of sand and the height of a 30-story building.

Not only is mercury porosimetry applicable over a wide range of pore sizes, but also the fundamen-
tal data it produces (the volume of mercury intruded into the sample as a function of applied pres-
sure) isindicative of various characteristics of the pore space and is used to reveal a variety of
physical properties of the solid material itself.

The information that follows falls into three main categories: I) instrument theory and its applica-
tion in data collection, 11) information derived from reduced data, and I11) presentation of the
information. A glossary of terms also isincluded.

Understanding how a fluid behaves under specific conditions provides insight into exactly how a
mercury porosimeter probes the surface of a material and moves within the pore structure. This
allows one to better understand what mercury intrusion and extrusion data mean in relation to the
sample under test and allows one to under stand the data outside of the bounds of the theoretical
model. It also allows one to make an educated comparison between similar data obtained using
other measurement techniques and theoretical models.

The information contained herein pertains for the most part to the general technique of mercury
porosimetry without regard to a specific instrument manufacturer or model. However,
Micromeritics AutoPore series of porosimetersis used as a reference, particularly when examples
are required and details of data reduction are presented.



SECTION I.
THEORY AND METHOD OF

MEASUREMENT

Introduction

Routine operation of an analytical instrument
does not require knowledge of the fundamental s of
instrument theory. However, an in-depth understand-
ing of the relationship between the probe and the
sample allows one to interpret data outside of the
strict limitations of the theoretical model upon which
datareduction isbased. Although this may have
limited relevance for day-to-day quality or process
control applications, it is of extreme importancein
research work and when devel oping analysis methods
for control applications. For these reasons, this
document begins with information about how anon-
wetting liquid (specifically, mercury) reactsin
seeking equilibrium between internal and external
forces at the liquid-solid, liquid-vapor, and liquid-
solid-vapor interfaces.
Fluid Dynamics and Capillary Hydrostatics
Note: Supporting information on fluid dynamics and
hydrostatics can be found on the Internet at sites (1,2,3)
cited in the Reference section of this document.

Consider adrop of liquid resting on asolid
surface as shown in Figure 1. The underside of the
liquidisin contact with the solid surface. The
remainder of the surface of theliquid isin contact
with some other fluid above— typically, either its
own vapor or air. Inthisconfiguration, there are
areas of liquid-salid, liquid-vapor, and solid-vapor
interfaces. There also exists aliquid-solid-vapor
boundary described by aline.

Liquid-solid interface
{area)

Liguid-vapor interface

Liquid-salid-vagor {area)

interface (ne

Figure 1. Cross-section of a drop of non-wetting liquid resting
on a solid surface. All interfaces are shown.

Thereistension in each interface. The liquid-
vapor interfacial tension is symbolized g,.,,, the liquid-
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solid g, , and the solid-vapor g,,. The liquid-vapor
and solid-vapor interfacial tensions also are referred
to as surface tensions. Surface tension has dimen-
sions of force per unit length and acts tangentially to
theinterface.

The angle of contact of the liquid-vapor surface to
the solid-vapor surface at a point on the liquid-solid-
vapor interface characterizestheinterfacial tension
present between the solid, liquid, and vapor.

Figure 2 shows five liquids of different surface
tensions resting on the same surface material. Differ-
ent surface energies cause the liquids to assume
different contact angles relative to the solid surface.
A liquid with low surfacetension (low surface
energy) resting on asolid surface of higher surface
tension will spread out on the surface forming a
contact angle lessthan 90¢; thisisreferred to as
wetting. |If the surface energy of the liquid exceeds
that of the solid, the liquid will form abead and the
angle of contact will be between 90cand 180; thisis
anon-wetting liquid relative to the surface.

Contact Angle
120

Figure 2. Various liquids resting on a solid surface. The different
angles of contact are illustrated for wetting and non-wetting
liquids.

Considering any point along the line that de-
scribesthe liquid-solid-vapor interface and indicating
al force vectors on that point resultsin a diagram
similar to those of Figure 3. Theseillustrations
represent atime sequence (top to bottom) showing
what happens when aliquid drop first is placed on a
horizontal surface until it achieves equilibrium. One
canimaginetheinitial, somewhat spherical drop
flattening and spreading over the surface prior to
stabilizing. The contact angle begins at about 180e,
and the liquid—vapor tension vector at the liquid-
solid-vapor interface points at the angle of contact.
Asthe contact angle decreases, the horizontal compo-
nent of the liquid-vapor tension vector changesin



magnitude and, if the contact angle decreases past
90¢, the horizontal component changes sign. When
the sum of the solid-vapor tension vector, liquid-solid
tension vector, and horizontal component of the
liquid-vapor tension vector equal zero, equilibrium
occurs and spreading ceases.
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Figure 3. A droplet of liquid placed on a solid surface assumes a
contact angle that balances the horizontal force components of
the three tension vectors. For this example, &, is the angle that
results in equilibrium.

The surface of theliquid at the liquid-vapor interface
assumes a curvature having two radii, r, and r,, onein
the x-z plane, the other in the y-z plane, where the
solid surfaceisthe x-y plane. Thisisanother effect
of surface tension. The surface molecules act like an
€lastic membrane pulling the surface into the smallest
configuration, ideally aspherewherer, =r,=r.
Surface tension contracts the surface and volume until
the internal force F, per unit area of surface A isin
equilibrium with the external forces on the same
surface element. Since pressure, P, isforce per unit
area(F/A), equilibrium can be expressed in terms of
internal and external pressures. From the equations
of Young and Laplace for spherical surfaces, the
difference in pressure across the surfaceis

P -P =yUr,+Ur)=2ylr (1)

where P’ isthe pressure on the concave side, P' the
pressure on the convex side, g the liquid-vapor
surfacetension, and, sinceit isaspherical surface,
r,=r,

Interfacial tensions also cause liquids to exhibit
capillarity. If one end of acapillary tube isforced to

penetrate the vapor-liquid surface from the vapor
side, awetting liquid spontaneously entersthe
capillary and risesto alevel above the external liquid-
vapor interface. A non-wetting liquid resists entering
the capillary and that alevel always below the
external liquid-vapor level. In other words, a non-
wetting liquid must be forced to enter a capillary.

Why does a non-wetting liquid resist entry into a
capillary? Inside the capillary and along the line
describing the vapor-liquid-solid boundary, the
liquid-solid interface assumes an angle that resultsin
equilibrium of forces. The contributing forces are
those of cohesion between the liquid molecules, and
the force of adhesion between the liquid molecules
and the walls of the capillary. The liquid-vapor
interface in the capillary (the meniscus) is concave for
awetting liquid and convex for a non-wetting liquid.
In summary, there are three physical parameters
needed to describe the intrusion of aliquid into a
capillary: a) theinterfacial tension (surface tension) of
the liquid-vapor interface, hereafter symbolized
simply by g, b) the contact angle g, and ¢) the geom-
etry of the line of contact at the solid-liquid-vapor
boundary. For acircular line of contact, the geometry
is described by prz, wherer isthe radius of the circle
or capillary.

Washburn (4) in 1921 derived an equation
describing the equilibrium of the internal and external
forces on the liquid-solid-vapor system in terms of
these three parameters. It states concisely that the
pressure required to force a non-wetting liquid to
enter acapillary of circular cross-sectionisinversely
proportional to the diameter of the capillary and
directly proportional to the surface tension of the
liquid and the angle of contact with the solid surface.
Thisphysical principal wasincorporated into an
intrusion-based, pore-measuring instrument by Ritter
& Drakein 1945 (5). Mercury isused ailmost exclu-
sively astheliquid of choice for intrusion
porosimetry because it is hon-wetting to most solid
materials.

Washburn's equation, upon which datareduction
is based, assumes that the pore or capillary iscylin-
drical and the opening iscircular in cross-section. As
has been stated, the net force tendsto resist entry of
the mercury into the pore and thisforce is applied
aong the line of contact of the mercury, solid, and
(mercury) vapor. Theline of contact has alength of
2pr and the component of force pushing the mercury
out of the capillary actsin the direction cosq (see
Figure 4), where q isthe liquid-solid contact angle.
The magnitude of force tending to expel the mercury

5



is

Fe = 21y cosB 2
wherey isthe surfacetension.

An external pressure on the mercury isrequired to
forceitsentry into the pore. The relationship be-
tween force (F) and pressure (P) isP = F/area.
Solving for force gives

F=mrP  (3)

Where 1tr2 is the cross-sectional area of the pore
opening.
Balancing the intrusion and extrusion forces resultsin
the Washburn eguation

-21Ty c0os0 = T1r2P 3

or, in terms of diameter D,
-TDy cosO = (TD2P)/4 (4)

The relationship between applied pressure and the
minimum size pore into which mercury will be forced
to enter is

D =-4ycost/P (5)

For agiven liquid-solid system, the numerator is
constant, providing the simple relationship expressing
that the size of the pore into which mercury will
intrude isinversely proportional to the applied
pressure. In other words, mercury under external
pressure P can resist entry into pores smaller than D,
but cannot resist entry into pores of sizeslarger than
D. So, for any pressure, it can be determined which
pore sizes have been invaded with mercury and which
sizes have not.

Figure 4. Capillary action of a wetting and non-wetting liquid
relative to the walls of a capillary. The g indicates the direction
of the interfacial tension (force) vector.

Collecting Experimental Data

A typical mercury intrusion porosimetry test involves
placing a sampleinto a container, evacuating the
container to remove contaminant gases and vapors
(usually water) and, while still evacuated, allowing
mercury to fill the container. This creates an environ-
ment consisting of a solid, a non-wetting liquid
(mercury), and mercury vapor. Next, pressureis
increased toward ambient while the volume of
mercury entering larger openingsin the sample bulk
ismonitored. When pressure has returned to ambient,
pores of diameters down to about 12 mm have been
filled. The sample container isthen placedin a
pressure vessel for the remainder of thetest. A
maximum pressure of about 60,000 psia (414 MPa)
istypical for commercial instruments and this pres-
sure will force mercury into pores down to about
0.003 micrometersin diameter. The volume of
mercury that intrudes into the sample dueto an
increase in pressure from P, to P, is equal to the
volume of the poresin the associated size ranger, to
.1, Sizesbeing determined by substituting pressure
valuesinto Washburn’s equation, Eq. 5.

The measurement of the volume of mercury moving
into the sample may be accomplished in various
ways. A common method that provides high sensitiv-
ity isto attach a capillary tube to the sample cup and
alow the capillary tube to be the reservoir for mer-
cury during the experiment. Only asmall volume of
mercury isrequired to produce along ‘string’ of
mercury in asmall capillary. When external pressure
changes, the variation in the length of the mercury
column in the capillary indicates the volume passing
into or out of the sample cup. For example, a capil-
lary of 1 mm radius requires only 0.03 cm3 of mer-
cury to produce a mercury column 1 mm in length.
Therefore, volume resolution of 0.003 cm? easily
could be obtained visually from a scale etched on the
capillary stem. However, electronic means of detect-
ing therise and fall of mercury within the capillary
are much more sensitive, providing even greater
volume sensitivity down to less than amicroliter.
The measurement of a series of applied pressures and
the cumul ative volumes of mercury intruded at each
pressure comprises the raw dataset. A plot of these
dataiscalled theintrusion curve. When pressureis
reduced, mercury leaves the pores, or extrudes. This
process also is monitored and plotted and is the
extrusion curve. According to the shape of the pores
and other physical phenomena, the extrusion curve
usually does not follow the same plotted path as the



intrusion curve. Therefore, the intrusion curve and
extrusion curve contain different information about
the pore network.
When to collect the data point is an important consid-
eration when measuring intrusion and extrusion
characteristics. Sincetheintrusion processinvolves
moving amass of mercury into aconfined pore
space, the process is not instantaneous as exemplified
by the Hagen-Poisevuille law

Q = VIt = (Tr¥8r)(AP/1) (6)

where Q = flow of theliquid, V the volume of liquid, t
time, r the capillary radius, nthe liquid viscosity and
AP/| the pressure drop per unit length of capillary.

However, long and tortuous pore channels result
in smaller Q values, therefore requiring more timeto
fill the same volume as would be the case for pore
systems having higher Q values. To obtain highly
resolved and highly accurate data, the intrusion
process must be allowed to equilibrate before chang-
ing pressure and probing the next smaller-sized pore
class. Expressed another way, high-resolution data
collection, particularly in the small pore size range,
requires a pressure step, that is, pressureisraised to
the next pressure, then held until flow ceases. Scan-
ning mode, in which pressureis continually changed,
is best employed for very large pores or for screening
purposes.

M easurement Transducers

From the above discussion, it is clear that a
mercury porosimeter measures only applied pressure
and the volume of mercury intruded into or extruded
from the sample bulk. Pressure measurements are
obtained by pressure transducers that produce an
electrical signal (current or voltage) that is propor-
tional to the amplitude of the pressure applied to the
sensor. Thisanalog electrical signal is converted into
digital code for processing by the monitoring com-
puter.

Thetransducer that detects mercury volumeis
integrated into the sample holder assembly as previ-
ously exemplified and shown in Figure 5.
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Figure 5. Cross-section of a penetrometer in which pressure has
forced some mercury into the pores of the sample and about
50% of the stem capacity has been used.

The sample cup has acapillary stem attached and
this capillary serves both as the mercury reservoir
during analysis and as an element of the mercury
volume transducer. Prior to the beginning of each
analysis, the sample cup and capillary arefilled with
mercury. After filling, the main source of mercury is
removed leaving only the mercury in the sample cup
and capillary stem, the combination being referred to
as the penetrometer. Pressure is applied to the mer-
cury in the capillary either by agas (air) or aliquid
(ail). The pressureis transmitted from the far end of
the capillary to the mercury surrounding the samplein
the sample cup.

The capillary stem is constructed of glass (an
electrical insulator), isfilled with mercury (an electri-
cal conductor), and the outer surface of the capillary
stemis plated with metal (an electrical conductor).
The combination of two concentric electrical conduc-
tors separated by an insulator produces a co-axial
capacitor. Thevalue of the capacitanceis afunction
of the areas of the conductors, the dielectric constant
of theinsulator, and other physical parameters. Inthe
case of this particular capacitor, the only variableis
the area of the interior conductor as mercury leaves
the capillary and enters the sample voids and pores,
or asit moves back into the capillary when pressureis



reduced. Thisismechanically analogousto a
mercury thermometer in which case mercury moves
in and out of a calibrated capillary from alarge bulb
at one end. A small volume of mercury entering or
leaving asmall capillary causesthe length (and area)
of the mercury column to change significantly, thus
providing volume-measuring sensitivity and resolu-
tion. Inthe case of the thermometer, the changein
volumeis proportional to the changein temperature
by the coefficient of volumetric expansion of mer-
cury.

The capacitance value of the stem is monitored by
a capacitance detector that, similar to the pressure
transducer electronics, produces an el ectrical signal
that is proportional to capacitance. Capacitance
measurements are transformed into volume measure-
ments by knowledge of the diameter of the precision
capillary and the equation governing coaxia capaci-
tors.

SECTION I1.

OBTAINING INFORMATION ABOUT THE
SAMPLE MATERIAL

PART A. Information Obtained Using Volume
and M ass M easurements Only

Part A discusses characteristics of the sample that
can be deduced directly from the intrusion volumes
combined with physical properties of the sample and
system. Detailed Pressure data are not required, nor is
Washburn's equation.

Total Pore Volume

Total pore volumeisthe most direct determina-
tion of aphysical property by mercury intrusion,
involving only the volume of mercury entering the
sample bulk and not requiring Washburn’s equation
or aporemodel. At thelowest filling pressure,
intrusion is considered nil and no pore volume of
interest has been filled. Pressureisincreased to
maximum; at this pressure mercury has been forced
into al voids of the sample accessible to the mercury
at maximum pressure. The volume of mercury
required to fill all accessible poresis considered the
total pore volume. Dividing thisvalue by the mass of
the sample gives total specific pore volume in units of
volume per unit mass.

Material Volume and Density

The concepts of volume and density seem simple at
first consideration. However, they become complex
when an attempt is made to rigorously define each
term. The Glossary section of this document con-
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tains various definitions. For a more complete
discussion of density and volume, refer to
Micromeritics' publication, ” Volume and Density for
Particle Technologists.” (6)

Bulk and Envelope Volume and Density: Bulk
volume (as applied to a collection of pieces) isthe
sum of the volumes of the solidsin each piece, the
voids within the pieces, and the voids among the
pieces. Envelope volume (as applied to asingle
piece) isthe volume of a particle or monolith as
would be obtained by tightly shrinking afilm around
it. Therefore, it isthe sum of the volumes of the solid
components, the open and closed pores within each
piece, and the voids between the surface features of
the material and the close-fitting imaginary film that
surrounds the piece. Bulk and skeletal densities
follow from dividing the respective material mass by
volume.

Mercury porosimetry testsin general incorporate
the majority of stepsin Archimedes displacement
method for volume determination. Including the
remaining steps requires additional weights otherwise
not necessary for pore characterization. Examples of
density determinations are given below. Powdered
and solid (monolithic) forms of sample materials are
considered separately because of a dlight but impor-
tant difference between volumes determined for a
solid object compared to that of afinely divided
powder.

Assume, then, that two samples are to be ana-
lyzed, one a solid piece of irregularly shaped mate-
rial, and the other a quantity of powder, both of
known mass. Prior to the tests, empty sample con-
tainers are weighed, filled with mercury, and then
weighed again. From these measurements and the
density of mercury, the exact volume of each con-
tainer iscalculated. After the samples have been
loaded into the containers and the containers refilled
with mercury, the mercury surrounds the samples.
Being a non-wetting liquid with only atmospheric
pressure applied, it does not enter small indentions,
cracks, and crevices on the surface nor into pores
within the structure of the material. In the case of
fine powders, mercury does not invade the interpar-
ticlevoids.

Theweight of the surrounding mercury in each
caseis calculated from values obtained by reweighing
the filled sample container and subtracting the weight
of the empty sample container and sample. Mercury
volume follows from density and weight. The differ-



ence in volumes of mercury in the sample container
before and after introducing the sampleis equal to the
bulk volume (in the case of the solid piece), or

envel ope volume (in the case of the powder).
Whether theterm ‘bulk’ or ‘envelope’ applies de-
pends on the sample form (powder, single piece,
granules, etc.) aswell asthe applications-specific
definitions of these terms.

Skeletal and True Volume and Density: A pore
may have access to the surface (open pores), or may
be isolated from the surface (closed or blind pores).
Skeletal volume, as applied to discrete pieces of solid
material, isthe sum of the volumes of the solid
material in the pieces and the volume of closed pores
within the pieces. True volume is the volume only of
the solid material, excluding the volume of open
pores and closed pores. Skeletal and true densities
follow from dividing the respective material mass by
volume.

If a sample contains both open and closed pores,
at maximum applied pressure, only open poresin the
sample are filled with mercury. The volume of
mercury intruded into the pores subtracted from the
bulk or envel ope volume of the sample givesits
skeletal volume. The volume measured isthe true
volume if the sample contains no blind pores and al
pore spaceisfilled. Finely grinding materialswith
closed pores (when appropriate) may allow true
volume and density also to be determined. If so, then
the volume measurements obtained prior to and after
grinding provide ameans for obtaining the total
volume of closed pores by subtracting true volume
from skeletal volume.

If the sample contains pores smaller than the
minimum pore size into which mercury can intrude at
maximum instrument pressure, then skeletal and true
volumes cannot be obtained accurately. This may
represent asmall, perhapsinsignificant, volume
percent when using an instrument capabl e of generat-
ing 60 kpsia (414 MPa). For these samples, volumes
determined by gas pycnometry are smaller than those
obtained by mercury porosimetry because gases such
as helium and nitrogen can penetrate into micropores
where mercury cannot. The differencein skeletal
density obtained by mercury porosimetry and by gas
pycnometry serves as a good approximation of pore
volume in the range from essentialy the size of the
gas molecule to the lower size represented by the
highest pressure obtained by mercury porosimetry.

When measuring volume (density) by mercury

porosimetry, it should be recognized that the value
obtained is pressure-dependent up to the pressure at
which al particle voids and pores arefilled. The
pressure required for total pore filling may be only
several thousand psi, but may require the full pressure
range of the instrument. At higher pressures, one must
be aware of material compressibility, which will
reduce the reported skeletal volume. More informa-
tion about compressibility is presented in a subse-
guent section.

Inter stitial Void Volume

Interstitial void volume, sometimes called inter-
particle void, isthe space between packed particles.
Such voids were taken into consideration in the
definition of envelope volume, above. These voids
typically arelarger than voidsin theindividual
particles and thereforefill at lower pressure. Being
larger, they also hold more mercury than particle
pores. This means that the rate of intrusion of
mercury with increasing pressure is greater when
filling the intertitial void than when filling pores
within the sample material. The completion of
interparticle void volume filling isindicated by an
abrupt changein filling rate observed on the intrusion
curve. Thetota volume of the interparticle voidsis
the volume of mercury intruded at the inflection
point.

Percent Porosity and Percent Porosity Filled
Knowing the bulk or envelope volume (V or V)

of asample and total porosity (V) allows percent

porosity to be calculated by the simple relationship

P% = (Vo/V.) x 100%.  (7)

The type of volume used in the equation for V.
determines what volumes are considered ‘ porosity.’
Volumes associated with interstitial voids and with
porosity can be differentiated as discussed previously.

In some applications, it is desired to know what
percent of total porosity has been filled (or remains
unfilled, or has emptied) at a certain pressure or pore
size boundary. Thisinformation also is readily
available from mercury porosimetry data since, once
total intrusion volume (total porosity) is known, the
cumulativeintrusion scale can be represented in units
of percent porosity.

PART B. INFORMATION OBTAINED BY APPLICATION
oF WasHBURN's EQUATION

The characteristics of a sample discussed in Part
A, with the exception of percent porosity filled at a



pore size boundary, are not dependent on any geo-
metrical pore model. When the sizes of pores areto
be determined and associated with volume determina-
tions, Washburn's equation and a pore model are
required. Characteristicsthat require modelsare
discussed in Part B.

Pore Volume Distribution by Pore Size

Rather than pumping the system immediately to
maximum pressure as in the example of obtaining
total pore volume, pore size distribution analyses
achieve maximum pressure by a series of small
pressure steps or by controlled-rate scanning. In step
mode, pressure and volume are measured after
intrusion (or extrusion) equilibration is achieved. The
cumulative intrusion volume of mercury at each
measured pressure is determined by subtracting the
volume of mercury remaining in the stem from the
original volume.

Applying Washburn's eguation to each measured
pressure provides the pore size associated with each
pressure, that is, the pore size class interval bound-
aries. In the great mgjority of cases and in the form of
Washburn's equation derived and presented as Eq. 5,
the poreis considered to be aright circular cylinder.

The volume of mercury intruded as the result of each
pressure step isthe difference between the respective
cumulative intrusion volumes. Thisvalue and the
associated pressure (pore size) valuesyield atable of
poresizeintervals and incremental volumes associ-
ated with each interval. Thisissufficient datafor a
bar graph of pore volume versus size class. For a
continuous curve, only asingle size valueisrequired
to represent the size class. Thisvalue may bethe
upper or lower size boundary or some representative
size between the two boundaries (the average size, for
example).

Pore Area and Number of Pores

Since the Washburn model is based on cylindrical
capillaries, the pore shape is assumed to be cylindri-
cal with acircular opening. Therefore, the equivalent
cylindrical pore sizeis obtained from the data. In
principle, any pore opening geometry (cavity cross-
section) is applicable aslong as the equation is known
for equilibrium between the external pressure applied
over the spanned area of the opening and for the
resistive force produced by interfacial tension around
the perimeter of the opening (the solid, liquid, vapor
interface).

A cylindrical pore model is used amost exclu-
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sively in practice. Fromthismodel, porewall areais
easily determined from incremental pore volumeV,;
by the equation

Ay =D/av, (8)

where D, isthe representative diameter for the sizeclass
(the average class diameter, for example). A certainin-
cremental pore volume and diameter implies a pore
length L since the relation between the length, diam-
eter, and volume of acylinder is

L = 4V/mD2 (9)

If arepresentative diameter is combined with a
representative pore length (thickness of the sample,
for example), then the number of poresin the size
range can be cal culated because each pore would
have a specific volume, V,, and the total volume of
al poresinthe classis known. The number of pores
of aspecific size, then, is

N=V,/V, (10)

Rootare and Prenzlow (7) take a model ess
approach to obtaining surface area information from
mercury porosimetry curves. Their calculationsbegin
with an expression of the reversible work required to
immersein mercury a unit area of asolid surface.
That expression is simply the differencein the surface
tension of the solid-vacuum interface (y ) and the
interfacial tension of the solid-mercury interface (y.,),
which reducestoy, cos0, wherey, isthe surfacefree
energy of liquid mercury in vacuo and 6 is the contact
angle between the mercury and solid surface. Differ-
entiation over area (a) gives

dw =y, cosfda (11)

In a porosimeter, the work is supplied by pressure P
forcing avolume V of mercury into a pore, therefore
work is PdV. Substitution into Eq. 11 and subsequent
integrationyields

a=-[ PdV (y cosB)? (12)

PART C. INFORMATION OBTAINED BY APPLICATION OF
SpPECIAL OR MULTIPLE M ODELS

Mercury porosimetry has been employed for decades
to characterize sample materialsin regard to the
physical parameters described in Parts A and B,
above. Morerecently, theoretical models of mercury
intrusion and extrusion mechanisms have been
introduced allowing additional information about the
sample material to be extracted. These methods of
data reduction are the subject of this part.



Particle Size Distribution

In 1965, Mayer and Stowe (8) published a paper
expanding the work of Frevel and Kressley (9) on the
mercury breakthrough pressure required to penetrate a
bed of packed spheres and the subsequent filling of
theinterstitial void. Thiswork relates particle sizeto
breakthrough pressure. Later work by Pospech and
Schneider (10) led to a method for determining the
size distribution of particlesfrom theintrusion datain
the range of intergtitial filling.

This method is based on models of penetration of
fluidsinto the void spaces of a collection of uniform
solid spheres packed in aregular manner. The forces
resisting penetration of mercury between particles
originates from interfacial tensionsjust aswith
penetration of mercury into capillaries. However, the
geometric model is considerably different and
therefore is not described by the Washburn equation
of equilibrium. The simplest geometry exists when
the particles are monosized spheres and the shapes of
the void necks and void cavities of such asystem are
exemplified in Figure 6. The figure shows the range
of angular relationships between spheres centered at
W, X, Y, and Z in aplane section.
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Figure 6. Ordered packing of spheres with cross-
sectional view of the shapes of mercury filling the
resulting voids. Also shown is the 3-dimensional
shape of the void in a rhombohedral packing.

Regardless of the actua particle shape, the
particle size distribution derived from this method is
the size distribution of spheres that, when applied to
the mathematical model, most closely reproduces the
experimental penetration data. The size unit, then, is
‘equivalent spherical size.” How closely the results
compare to that obtained by other methods of particle
sizing depends largely on how closely the sample
material conforms to the model of closely packed
spheres.

Pore Cavity to Pore Throat Size Ratio

For many materials, porosity is composed of a
network of interconnected voids of various sizes.
Small pores at the surface may connect to large pores
within the material; the openings are referred to as
pore throats and the spaces within the material as pore
cavities. There are numerous methods for extracting
pore shape information from mercury injection data.
These often are based on specific pore models and
may reguire some knowledge of the pore structure in
order to select the appropriate method. A few of these
methods are discussed here.

Most pore shape evaluation methods are based on
the hypothesisthat hysteresisin mercury porosimetry
is attributable to pore shape. Indeed, if each pore
were asimple, uniform cylinder and the intrusion and
extrusion contact angles are known and applied, one
would expect there to be no hysteresis since the
intrusion and extrusion processes both are controlled
by the same mechanism and known parameters.
However, hysteresis|oops of various shapes often are
observed and many do not close when pressureis
reduced from some elevated value to ambient. This
is attributed to large cavities being interconnected by
smaller pore throats. This applies even if the shape of
the throats and cavities are cylindrical. Although large
poresfill at low pressures, alarge cavity connected to
the surface by a small throat cannot fill until the
pressure is sufficient to fill the smaller connecting
throat. Upon decompression, the small throat emp-
ties at the same pressure at which it filled, but the
large cavity behind the throat remains filled because
the interna forcesin thisvolume of relatively large
radiusisinsufficient to overcome the external forces
at the current pressure (see Section 1). The pore will
empty at the lower pressure associated with its radius,
or it may not empty at all if the path to the surfaceis
composed of pores of inappropriate sizes.

So, intrusion of mercury into a cavity is con-
trolled by the size of the pore throat radius while the
radius of the cavity and its connectivity controls
extrusion of mercury from the cavity. A way to
characterize the relationship between pore throat and
cavity existing in amaterial is by theratio of these
sizesand is calculated in the following manner.

Assume that at some pressure P, relating to pore
sizeR, that VV, cm? of mercury is contained by pores
in the sample. Intrusion continuesto pressure P, at
which all poresarefilled (V,). Then, pressureis
reduced and extrusion begins. If thereishysteresis
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(asistypical), pressure must fall to avalue lower than
P, say P, before sufficient mercury extrudesto
reduce the volume of mercury within the sample
againtoV,. Theporesizethat relatestoP, isR,,
and thisisthe cavity sizethat is paired with throat
size R, .the pore throat to pore cavity sizeratio, then,
isR/R,,.

Intrusion volume is expressed in terms of fraction
of total porosity filled in order to normalize data for
sample-to-sample comparisons. The fraction of
porosity filled istheratio of the cumulative intrusion
volume at any point to the total intrusion volume.
The pore cavity to pore throat ratio method does not
relate the cavity size to the size of the throat through
which it wasfilled; rather it relates the fraction of
porosity filled to the pore sizes that control this state
during intrusion and extrusion.

The Distribution of Pore Cavity Sizes Associated
With a Pore Throat Size

Reverberi and Ferraiolo (11) devised a means by
which to determine the distribution of cavity sizes
connected to a pore throat of a specific size. They
constructed a pore model that relates hysteresis solely
to the existence of inkwell- shaped pores. An
inkwell-shaped pore has acylindrical pore throat
(radius R,) that connectsto alarger cylindrical pore
cavity (radiusR)).

Thetest is performed first by allowing intrusion
to occur up to maximum pressure P,, thereby filling
all throats and cavitiesfrom size R, (at minimum
pressure) to R, (at maximum pressure) with V, units
of mercury. Theintrusion curveisarecord of
cumulativeintrusion at each point in the pressure
ramp. Pressureisthen lowered afew percent to some
sub-maximum pressure P, that corresponds to capil-
lary size R,. Thisempties only pores and pore
cavitieswith diameters between R, and R. The
difference in the cumulative intrusion observed at P,
on theintrusion branch and P, on the extrusion branch
isthe volume of cavitieswith sizesgreater than R,.
Pressureisincreased again to P,. Theintrusion curve
will not take the same path as the original intrusion
curveif mercury was trapped since these pores
aready arefilled. Pressureisreduced from P, to a
pressure P, where P, <P, <P,. Thetotal intruded
volume remaining in the pore spaceisrecorded. Pore
throats and cavitiesin the sizerange R, to R, empty.
The pressure is raised again to maximum. The
intrusion path retraces neither path P, to P, nor path P,
to P, because a different set of poresis being filled.
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The pressure increased again to maximum,
reduced to P,,, raised to maximum, reduced to P, and
so on until the range of interest is sampled. The data
thus obtained are reduced to yield athree-dimensional
data set providing the distribution of pore cavity
volumes versus cavity sizes behind each of a series of
porethroat sizes.

Material Permeability and the Conductivity
Formation Factor

Permeability is the inherent ability of aporous
medium to transmit afluid and is a property of the
material. It relates to porosity in the sensethat it isthe
“proportionality constant” linking fluid flow rate to
applied pressure across aporous medium. There
have been many attempts over the yearsto relate
permeability to some relevant microstructurally-
defined length scale. (12) The work of Katz and
Thompson (13, 14) provides an important contribu-
tion to masstransport studies in facilitating the
prediction of fluid permeability of materials from
mercury injection data.

Katz and Thompson introduced two expressions
for cal culating absol ute permeability (k) using data
from asingle mercury injection capillary pressure
curve. The equations were derived from percolation
theory. The first provided rigorous results by incorpo-
rating the measured conductivity formation factor
(conductance ratio) da, as a parameter. Here ois the
rock conductivity at characteristic length L, and g,
the conductance of brine in the pore space. Mercury
porosimetry data are used to determine the character-
istic length L of the pore space. The equation for
permeability is

k = 1/226(L,)? dg, (13)

The second equation provides for an estimation of
dq, to be obtained from the same mercury intrusion
dataaswere used todetermine k. This equation, in
addition to L, requires the value of thelength (pore
size) at which hydraulic conductance is maximum
(L5, and the fraction of total porosity efilledat L,
(symbolized by S(L,..,)). Theequationis

k = (U89 (L e AL rand L ) B ) (14)

Although appearing similar, the Katz-Thompson
expression for conductivity formation factor is
fundamentally different from the classical Archie's
law. For Equations 13 and 14, k isreported in units
of millidarcys and has fundamental units of area.

Aspressureisincreased, mercury isforced to



invade smaller and smaller pore openingsin the
permeable material. Ultimately, acritical pressureis
reached at which the mercury spansthe sample. This
conduction path is composed of pores of diameter
equal to and larger than the diameter calculated from
the Washburn equation for the critical pressure. This
diameter, L in equation 13, is a unique transport
length scale and dominates the magnitude of the
permeability.

To obtain this characteristic length L from the
mercury intrusion data set, pressure is determined at
the point of inflection in the rapidly rising range of
the cumulative intrusion curve. Thisinflection point
was determined experimentally by Katz and Thomp-
son to correspond closely to the pressure at which
mercury first spans the sample and the point at which
percolation begins. This pressure point is defined as
the threshold pressure (P,). Thevalue of L isthe pore
diameter (or length scale) calculated from the
Washburn equation for P,. Having obtained L is
aufficientif dg, has been measured independently
and isknown.

To use the second form of the equation, which
estimates dg,, the cumulative intrusion volume V, at
threshold pressure (P,) is determined. Then, the
quantity V, is subtracted from each intrusion volume
value at each pressure in the data set from threshold
pressure to maximum pressure. Data points prior to
the threshold pressure are excluded. The net volume
(V.- V,in cm?) times the diameter-cubed
(micrometer3) for the corresponding pressureis
calculated as afunction of pore diameter
(micrometers). Thisisthe hydraulic conductance
function, or permeability path. The pore diameter
corresponding to the maximum y-valueisL, ., the
cumul ative volume of mercury intruded at this
diameterisV, ... Thefraction S(L ) iscalculated as
theratio of V| ./V, and isthe fractional volume of
connected pore space composed of pore width of size
L, andlarger.

For both data reduction methods (using entered
valuesfor dg, or calculating an estimated dg), the
equations depend on a judicious choice of the point at
which inflection occurs and the resulting values of
threshold pressure (P,) and threshold volume (V,).
The computer program performs the first approxima-
tion and the initial value for permeability is reported
on thisbasis. However, the intrusion curve should be
inspected and the choice of the appropriate inflection
point confirmed. There are cases inwhich there are

multiple inflection points and a judgment is
needed to determine which most likely
represents the onset of percolation, or if the
method is even applicable to the sample.
Therefore, permeability calculations usually
require a second pass through the data
reduction routine using adjusted param-
eters. It should be noted also that a change
in permeability value would affect the re-
ported value for tortuosity.

In the literature, one frequently finds references
to the K-T method, both in regard to determining
permeability by mercury injection, and to their
method of identifying the percolation region, the
optimum path for permeability, and the threshold
pressure from mercury intrusion data. These param-
eters are in other methods discussed in this document.

Pore Fractal Dimensions

Many natural and man-made materials have
complex pore structure that changes only in size, but
not in geometrical shape, over arange of pore
volumes. Thistype of geometry has the quality of
‘self-similarity’ and can be described in terms of its
fractal dimensions.

Angulo, Alvarado, and Gonzalez (15) published a
method by which mercury porosimetry data can be
reduced to extract information about the fractal
characteristics of the pore space of the sample
material. For their method to be applicable, there
must be one or more linear regions on alog-log plot
of intrusion volume versus pressure. The plot
describes the volume scaling of the pore space and
linearity impliesthat pore volume hasfractal dimen-
sions. The equation describing alinear regionis
determined and the value of the fractal dimension of
the materia in thelinear range is extracted from the
inverse log of the equation. Two regions of linearity
are found in the data from some materials; thisis
attributed to there being two different processes
related to pore space. The lower pressure linear
region occurs during ‘backbone formation’ when
mercury isfinding a conductivity path through the
pore structure. The adjacent linear region at higher
pressure occurs during ‘ percolation’ where flow
through the medium is optimized.

For fractal analysisto be of value, the implica
tions of fractal geometry must be appreciated. For
anyone unfamiliar with fractal geometry, asimple,
instructive exercise can be performed. First, draw a
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square of dimension L, where L isany dimension.
The square will be the conserved geometry, so every
sub-element also will be asquare, only smaller.
Dividethe original square into four squares of equal
size (L/2x L/2). Then, remove any one of the small
squares. Divide each of the remaining three squares
into four smaller squares (L/4 x L/4). From each of
the three new groups, remove one square. Continue
this process n times, where n is a positive integer.
Theresult isaset of very small squares forming
larger squares, all but the smallest having voids of
various sizes. The dimension of the smallest square
from which all other squares are composed, is called
the length scale. The dimension of the smallest
squareis calculated using the formulaL/2", wherenis
the number of times the original square was divided.
The numerator isthe original length of aside of the
square, and the number 2 in the denominator isthe
number of equal partsinto which the original length
was divided. The number N of remaining sgquares at
the end of the exercise equals 3", where the number 3
is derived from the number of remaining squares after
each divide-and-discard step.

In general, aself-similar set of thistypeisex-
pressed by the equation
N() =&° (15

where N(9) is the number of elements of dimension
0, 0 isthe smallest dimension after n divisions, and D
isthe fractal dimension.

Taking the logarithm of this equation provides a
solution for D, whichis

D = log[N(d)]/log(1/d) (16)

For the example given, N(d) = 3"and 6 = 1/2".
Substituting these valuesinto equation 10 gives

D =1log(3")/1og(27)

=nlog(3)/nlog(2)

=log(3)/log(2) = 1.58 an

Note that the fractal dimension does not depend
upon the number of iterations, n. Ultimately, it
depends upon the fraction by which the length scaleis
divided and the number of remaining elements after
each iteration. Thetotal number of elements and the
length scale, however, are functions of n.

Following the example above, the total area of the
remaining object is equal to the number of minor
elements times the area of each, or
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A =N(0) & (18)
Since N(0) = 6P,
A=32D (19

where D in thiscaseisthe areafractional dimension.

An expression for volumetric fractal dimensionis
derived as above, yielding

V=30 (20

If asample has pore space that isfractal, then the
volume of mercury intruded with increasing pressure
asowill scaleasafractal. Using apressure scale
rather than alength scale, and subtracting the thresh-
old pressure Pt from the capillary pressure P, Equa-
tion 14 is expressed as

V = (P-P)eD (21)
Taking the logarithm of this equation gives
log(V) = (3-D)log(P-Pt) (22)

where (3-D) isthe slope of the log(V) vs. log(P-Pt)
plot. Ptisthe pressureidentified by Katz and Th-
ompson (see the section on permeability) asthe
pressure at which mercury first percolates and spans
the porous medium.

The equations developed above are based on
regular geometry, as are most models, the cylindrical
pore model of the Washburn equation, being an
example. The application of this data reduction
method indicates, by the occurrence of alinear range
onthelog(V) vs. log(P-Pt) plot, that pore volume
filling isindicative of pores of fractal dimension.
Reduction of datain that area provides the fractal
dimension.

Fractal dimensions often are compared with other
effects of porosity to test for correlation. For ex-
ample, materials with fractal geometry often have
quite different fluid transport characteristics than do
materials having random geometry. Therefore, fractal
dimensions can be important physical parameters
when studying reservoir rocks and catalysts and other
materials through which fluid must flow. The fact
that the porosity has or does not have fractal geom-
etry also may be indicative of the physical processes
that formed the material.

In practice, determinations of the fractal dimen-
sions of the backbone formation and percolation
regions are accomplished after thelog(V) vs. log(P-
Pt) plot has been examined and the boundaries of the



linear regionsidentified. Another variablethat may
reguire adjustment after the analysisis Pt, the thresh-
old pressure. Since these determinations only can be
made after seeing certain reduced data, parameter
adjustments and a second pass through the data
reduction routine is required, thistime only producing
the reports on which changes are expected.

Pore Tortuosity and Tortuosity Factor

Theterms tortuosity and tortuosity factor express
two different characteristics of amaterial. Tortuosity
istheratio of actual distance traveled between two
points to the minimum distance between the same
two points. Tortuosity factor is commonly used in the
area of heterogeneous catalysis and isthe ratio of
tortuosity to constriction.

Thetortuosity factor characterizesthe efficiency
of diffusion of fluids through a porous media.
Diffusion-controlled processes are of particular
importance in catalysts where the solid support
usually contains a pore network with poresranging
from micro- through to macropores. The manner in
which pores interconnect can have a profound effect
on the accessibility of reactantsto the active sites and
on the removal of products.

Also, characterization of the pore structure,
including tortuosity, of porous filtration membranes
such as microfiltration and ultrafiltration membranes
is an important determination. Modeling the transport
of contaminants through soil or other porous matrices
also depends on knowledge of the materials tortuos-
ity.

In 1998, Jorgen Hager (16) in hisPh. D. thesis at
Lund University (Sweden) derived an expression for
material permeability based on a capillary bundle
model in which pores are homogeneously distributed
in random directions. Using the Hagen-Poiseuille
correlation for fluid flow in cylindrical geometries,
making substitutions with measurable parameters, and
combining with Darcy’s law, he derived an expres-
sion for material permeability in terms of total pore
volume, material density, pore volume distribution by
pore size, and material tortuosity. All parameters but
tortuosity are abtainable from mercury porosimetry
tests.

As presented previoudly, Katz and Thompson also
derived an expression for material permeability based
on measurements obtainable from mercury
porosimetry. Their expression does not depend on
knowledge of material tortuosity. Therefore, combin-

ing the Hager and Katz-Thompson expressions
provides a means for determining tortuosity from
data collected by mercury porosimetry.

Obvioudly, if the Katz-Thompson valuefor
permeability is used for tortuosity, permeability must
first be determined appropriately. This meansthat the
K-T point of inflection must have been accurately
identified. Furthermore, for minimum error, the
value of d/o should be known and entered as a
parameter ifi the K-T data reduction routine. How-
ever, the K-T method can be used to estimate o but
estimation diminishes the reliability of the cal cul ated
tortuosity value.

The dependency of tortuosity determinations on
permeability determinations means also that any
recal culation that affects the reported permeability
a so affects the reported value for tortuosity. There-
fore, if permeability isrecalculated for any reason (a
better estimate of the inflection point, for example),
then the system should be allowed also to recalculate
and report tortuosity using the updated val ue of
permeability.

Material Compressibility

It has long been noted that for many materials the
intrusion curve at near maximum pressure takes a
sudden upward swing. In some cases, the apparent
uptake of mercury by the sample actualy is caused by
mercury filling the void in the sample cup produced
by the collapse or compression of the sample mate-
rial. If the extrusion curve follows the intrusion curve
inthisregion, the material is demonstrating restitution
or elasticity and returning to its original shape or
volume. If the extrusion curvefailsto retrace the
intrusion curve, the material, to some extent, is
permanently deformed. A pore filled with mercury
applies pressure to the pore walls essentially with the
same pressure as applied by the bulk mercury sur-
rounding the sasmple. Therefore, structural collapseis
not likely caused by collapse of the open pore
structure, but more likely is due to voids that are
inaccessible to the mercury. However, thereisno
way mercury porosimetry can determine whether the
upward swing in theintrusion curve was caused by
material compression, void collapse, filling of open
pores, or amore common combination of these.

Compressibility dataare more reliable when
working with non-porous materials and, in this
application, any apparent uptake of mercury in the
high or low pressure regions may be attributed to
material compression. However, before data reduc-
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tion can be performed, there must be available a
“blank run” file consisting (at least ideally) of arun
made with the same penetrometer that isto be used in
the compressibility test and on the same instrument
ports aswill be used in the compressibility run. The
pressure range of the blank run must, at a minimum,
fully encompass the planned range to be used in the
compressibility measurement. Thisgreatly improves
the accuracy of the data by eliminating any deviations
in the baseline caused by components in the system.

Quantifying compressibility consists of first
identifying the range of datain which compressibility
occurs, or in which the compressibility functionisto
be determined. The default range isthe entire
intrusion curve and this may need to be changed by
having pre-knowledge of the desired range, or by
inspection of theintrusion curve after the analysis.

By the latter method, a second pass through the data
reduction routineisrequired if the calculation rangeis
changed from the pre-analysis values.

The compression function is expressed as a
guadratic equation derived from the changein
volume with pressure. Assume that at each experi-
mental pressure, Pn, the corresponding blank cor-
rected intrusion, V(Pn), can be computed using the
second order polynomial expression

V(Pn) =Vo + B*Pn + C*Pn?. (23)
where Vo isthe exact volume of the sample materia
computed astheratio of the  sample weight and
the sample density supplied by the user or,
aternatively, supplied as the pre-measured sample
volume by the user; B isthelinear pressure
coefficient of volumetric compressibility; and Cis
the quadratic pressure coefficient of volumetric
compressibility.

The instrument will determine the best fit of this
guadratic equation to the experimental data by
adjusting the B and C appropriately. A plot of the
experimental data overlaid with the predicted data can
be inspected for goodness of fit. If the two plots
closely agree, then the derived function expresses the
compression response of the material to pressurein
the range of calculation.

It is expected that the knowledgeabl e user will
need to fully take into account various limitationsin
the art and technique. A blank correction run will
provide areference that will compensate for most of
these variables. Perhapstheleast controllable vari-
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ableistemperature increases which create a“ther-
mometer effect” in the penetrometer system and are
caused by compression of the hydraulic fluid as
pressureis built. The amount of temperature increase
depends upon the exact rate and time pattern with
which the pressure isincreased but can be as high as
50 C if maximally rapid pressurization of a small
penetrometer is done.

Relation of Mercury Porosimetry to Other
Porosimetry Techniques

Gas sorption and mercury porosimetry are
complementary techniques. Physical adsorption
techniques can extend the lower size measurement
down to about 0.00035 mm diameter, thus probing
the intraparticle microstructure. Mercury porosimetry
is paired with the gas sorption technique to obtain
porosity information in the large size range (greater
than about 0.3 mm diameter up to about 360 mm),
which is not attainable by gas sorption. When using
two different techniques (two very different models),
one should not expect necessarily to obtain the same
resultsin the overlapping or common range of both
instruments. However, comparable results have been
reported (17) for some materials.

One potential difficulty in comparing porosity
data sets obtained in the smaller size range by mer-
cury porosimetry with data gathered in the same
range by gas sorption is that sample compressionisa
possibility with mercury porosimetry. If sample
compression occurs, an apparent uptake of mercury is
superimposed on theintrusion curve leading to an
erroneous indication of pore volume, and one not
reproduced by the gas adsorption analysis.

Aswas mentioned in the sections on volume and
density, mercury porosimetry data can be compared
with gas pycnometry datato reveal additional poros-
ity not detected by the mercury intrusion method
aone. Indeed, comparing data obtained by different
techniques for the same material characteristicscan
reveal information not attainable by either method
aone. Therequirement, of course, isthat the mea-
surement theories of both techniques be well under-
stood.



GLOSSARY
Angle of contact: see Contact Angle

Apparent quantity: find under name of specific quan-
tity, i.e. Volume, Apparent

Archie'sLaw: Anempirical equation relating the elec-
trical conductivity of a porous material and expressed
as

P.= PFA(Pm
wherep isthe electrical property of the rock, p the
electricd property of the fluid, ¢ the porosity of the

medium, and A and m depend on the geometry of the
pores.

Area, Incremental Specific: Thetotal areaof poreswith
the size class defined by theincrement boundaries. This
valueiscalculated using incremental volumerather than
cumulative volume. Therefore, the incremental pore
area between the boundariesi and j is calculated by

Aij =4(Vj-Vi)/Dm,
where Dy, isthe mean diameter (see definition).

Area, Cumulative Pore: The summation of pore area
over arange of poresizes. Poreareaiscalculated from
the geometry of aright circular cylinder beginning with
Cumulative Volume (as measured) and equalsnDZh/4,
where D is the diameter of the pore and h is its depth.
Sincethe areaof aright circular cylinder equals tDh,
the relation between the volume and areais A= 4V/D.

Backbone: That part of the spanning cluster of con-
nected pores and voids that takes the most direct path
through the medium.

Backbone Formation: Development of the main path
through which the fluid will percolate.

Bulk quantity: find under name of specific quantity, i.e.
\Volume, Bulk

Capillarity: The action that causes the elevation or de-
pression of aliquid surfacein contact with asolid. Itis
caused by therelative attraction of theliquid molecules
to each other and to the molecules of the solid. Same
ascapillary action.

Capillary Pressure: The pressuredifferential acrossthe
meniscus; the driving force for capillary
penetration.

Characteristic Length: The pore diameter calcul ated

from the pressure at which percolation through the po-
rous material first occurs.

Compact: Verbform- Toincreasethebulk density of a
granular material by the compression.

Noun form- A tablet or briguette resulting from
compressing agranular or powdered material.

Conductivity Formation Factor: Theratio of the elec-
trical conductance of a rock permeated with brine to
the electrical conductance of brine. The reduction in
conductivity iscaused by the presence of theinsulating
solid phase and therefore isrelated the porosity. It also
is affected by pore tortuosity and interconnectivity.

Connectivity: The degreetowhich pores, fractures, and
voids are joined to form continuous paths through a
medium. Directly related to Percolation.

Contact angle: The angle between the liquid and the
solid surface at the liquid-solid-vapor interface and tan-
gent to the curve of the droplet. The contact angle of a
liquid on a smooth, homogeneous surface; depends on
the surface energy of solid and liquid. The higher the
surface energy of the solid substrate, the better its
wettability and the smaller the contact angle. Related
to the Surface Tension by the Young's Law.

Cumulative quantity: Total quantity accumulated (sum-
mation) over arange of operation (comparewith Incre-
mental quantity). For specific definitions, look under
the name of the specific quantity, i.e. Volume, Cumula-
tive.

Darcy: A unit of permeability. Equal to the flow of 1
ml of fluid of 1 centipoiseviscosity in 1 second under a
pressure gradient of 1 atmosphere acrossa 1cm? and |
cm long section of porous material. Has units of area
(cm?). 1 darcy = 1x10 -12 m? or 1x108 cm? . 1
millidarcy (md) = 1x10-® m2 or 1x10-® cm?.

Darcy'sLaw: A law describing the rate of fluid flow
through a porous medium having specific physical prop-
erties. Mathematically,

Q = kAP

Where Q istherate of flow (ml/sec), AP the pressure
gradient, nthe fluid viscosity, and | the length (thick-
ness of sample) The material permeability (hydraulic
conductivity) k is

k=r%8

wherer isthe radius of the pore. Darcy’sLaw isvalid
only for steady-state, laminar fluid flow. Seethe Hagen-
Poiseuille equation.
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Density, Apparent (or Particle Density) is the mass
divided by the volumeincluding both closed poresand
open pores. Thisisin contrast to the mass per unit
volume of the individual particles, which is a higher
value.

Density, Bulk (or Packing Density) aretermsused in
powder technology. Bulk density or packing density is
the mass of particles composing the bed divided by the
bulk volume of the bed.

Density, Packing see Density, Bulk

Density The mass of a substance per unit volume (D =
m/V). Volume may be defined in different ways ac-
cording to how it is measured. Therefore, the defini-
tion of density is determined by the definition of vol-
ume. Definitions can vary somewhat from industry to
industry.

Density, Bulk: The mass of the bulk quantity divided
by the bulk volume; see Volume, Bulk.

Density, Envelope: The mass of the specimen divided
by the envel ope volume; see Volume, Envel ope.

Density, Particle (or Envelope Density) is the mass of
the particle divided by the volume of the particle in-
cluding closed pores but excluding open pores.

Density, True (or Substance Density) is the mass di-
vided by the solid volume or true skeletal volume. Itis
usually determined after the substance has been reduced
to a particle size so small that it accommodates no in-
ternal voids.

Density, Theoretical is similar to true density except
theoretical density includestherequirement that the solid
material hasanideal regular arrangement at the atomic
level.

Density, Skeletal isusually the massdivided by the skel-
etal volumeremaining after thevolume of all open pores
larger than 0.005 micrometers have been subtracted.

Diameter / Radius. In mercury porosimetry, thisisthe
dimension of the circular (or other) pore model. For
every collected pressure point, thereisacorresponding
diameter obtained from the Washburn equation. Ra-
dius, when used, is obtained by dividing the calculated
diameter by two.

Diameter, Mean: The average diameter within aclass
or datarange. Over agiven range of diameters (pres-
sures) from D; to Dj, the mean diameter iscal culated as
Di-Dj/2.

Differential quantity: In general, the magnitude of the
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changein aquantity, or difference. Generally, the dif-
ference between two quantities, but in mercury
porosimetry, the differential quantity alwayswill be pore
size (diameter or radius). It iscalculated by subtracting
the size of the pores corresponding to one pressure
boundary of the increment from that of the other pres-
sure boundary. For specific definitions, look under the
name of the specific quantity, i.e. Volume, Differential.

Diffusion: As used in this document, the transport of
mass by the spontaneous movement of particles (ions)
through the liquid filling the pores.

Distribution (number, area, and volume): In mercury
porosimetry, pore size calculated from pressure is the
independent variable and this represents the distribu-
tion range. That which is distributed is the dependent
variable, either the number, area, or volume of poresat
each valuethroughout therange. For example, the pore
volume distribution by pore sizes (diameter or radius).

Equilibration: The state at which mercury has ceased
to flow into the pore space at the current pressure.

Fluid: A substance having no resistance to deforma:
tion when subjected to a shearing force.

Formation Factor: See Conductivity Formation Fac-
tor:

Fractal: A shape that is composed of smaller replicas
of the same shape, that is, having self similarity. A
simple example is a square area composed of small
squares that are themselves composed of smaller
squares, ad infinitum. Characterized by a power law
distribution.

Geometric quantity: A dimension of an object of regu-
lar geometry such as a sphere or cylinder. For specific
geometries (shapes), ook under the name of the shape,
i.e. “Volume, Geometric”

Greenware: Ceramicwarethat hasnot beenfired. Also
applied to powdered metal compacts prior to sintering.

Hagen-Poiseuille Equation: An expression describ-
ing the laminar flow of fluid through asingle cylindri-
cal tube (capillary or pore) under theinfluence of apres-
sure gradient and as a function of fluid viscosity and
density, capillary length and diameter, and flow veloc-
ity. Often expressed in terms of flow quantity, Q as

Q = Vit = (1r4/8n(AP/)

WhereV/tisthevolumerate of flow, r theradius of the
capillary (pore), ntheliquid viscosity, and AP/l the pres-
suredifferential over alength 1 of capillary. SeeDarcy's



Law.

Hydraulic Conductivity: Permeability inrelationtothe
fluid; unlike permeability, hydraulic conductivity takes
into account the particular fluid that is present in the
medium. See Permeability

Hydraulic Radius: Theratio of volumeto surface area
of a porous material. Also, the ratio of the cross-sec-
tional area of flow to the perimeter of the channel.

Hysteresis: In mercury porosimetry, hysteresisis used
to describe the failure of the extrusion curveto retrace
theintrusion curve, that is, at the same pressure on the
two curves, the quantity of mercury contained in the
pore system differs. The extrusion curve with no hys-
teresiswill exactly retracetheintrusion curve, and with
hysteresis, will always have volume valuesgreater than
theintrusion curve at the same pressure. An error con-
dition existsif the extrusion curve dips bel ow theintru-
sion curve. Thetwo curves seldom closeto form ahys-
teresis loop as is required for gas adsorption -desorp-
tion curves.

Incremental quantity: A quantity summed between the
two boundariesthat definetheincrement (comparewith
Cululative guantity). For specific definitions, ook
under the name of the specific quantity, i.e. Volume,
Incremental.

Interface: Asused in this document, the boundary be-
tween any two phases, gas (vapor), liquid, or solid.
Theseinclude, vapor-liquid, vapor-solid, liquid-liquid,
liquid-solid, and solid-solid.

Interfacial Energy: The free energy of the surfaces at
the interface of two phases resulting from differences
in the tendencies of each phase to attract its own mol-
ecules. Also known as surface energy. See also, Sur-
face Tension and Surface Energy.

Intergranular porosity: Void space between particles.
See Interstitial Space.

Internal Energy (Forces): That portion of the total en-
ergy of asubstancethat is dueto the kinetic and poten-
tial energy of the individual molecules; for example,
that possessed by a compressed fluid.

Interstitial Space (Moids): The void space formed be-
tween two or more particles packed together.

Katz-Thompson Method: A method by which to deter-
mine the permeability of a porous medium using data
obtained by mercury porosimetry.

Lithogenesis: The formation of rocks.

Log differential quantity: The difference between
thelogarithmsof two quantities. |nmercury porosimetry
discussions, log differential quantities refer to quanti-
ties calculated using thelog of the differential poresize
(diameter or radius). For example, log(D;) - Iog(Dj).

Lognormal distribution: A distribution in which the
log values of sizesare distributed in anormal distribu-
tion.

Macropore: Poreswith diameters exceeding 0.05 pm.

Meniscus: Thefree surface of aliquid-vapor boundary
near the walls of the containing vessel (apore or capil-
lary) and which assumes acurvature dueto surfaceten-
sion.

Mesopore:  Pores with diameters between 0.002 um
and 0.05 pm.

Micropore: Poreswith diameters equal to or lessthan
0.002 pm.

Millidarcy: 1072 Darcy; see Darcy.

Model (Theoretical): A model, in the sense used in this
document, is a mathematical or physical system that
obeys specific conditions and whose behavior is used
to help understand an analogous physical system. In
mercury porosimetry, one theoretical model is that of
system cylindrical pores.

Optimum path for Permeability: The poresizeat which
the product of intrusion volume and the cube of the
poresizeis maximum. The peak of the hydraulic con-
ductance function in the Katz-Thompson method.

Pascal: Unit of pressure. To convert Pascals to other
units, use the table below.

To convert Pascalsto... multiply by...
atmosphere 9.869 x 10°

bar 1 x 10°

dynes/cm? 10

kg/cm? 1.020 x 10°

psi or Ib/in? 1.4508 x 104

torr or mm Hg 7.5028 x 103
Percolate (Percolation): The movement of a fluid
through a porous medium.

Penetrometer: A combination of asample holder (cup)
and the analytical mercury reservoir (stem) used in
mercury porosimetry. Also called a dilatometer.
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Permeability: The capacity of a materia to transmit
fluid. The conductance of fluid flow that a porous or
fractured medium exhibits. Under specia conditions,
also referred to as Hydraulic Conductivity.

Pore Cavity: Any void laying beneath the surface and
connected to the surface by asmaller void or pore.

Pore, Closed: Strictly, aporethat has no conduit to the
surface. In regard to mercury porosimetry, a pore that
has no conduit to the surface of sufficient size for mer-
cury to invade at maximum pressure.

Pore, Ink WEl: A pore system composed of a small
cylindrical porethat opensinto alarger cylindrical pore.

Pore, Open: A porethat is on the surface or has a con-
duit to the surface of the particle or specimen.

Pore Throat (neck): The opening at the surface (some-
timescalled simply ‘pore’). Also, aporethrough which
alarger pore (cavity) is accessed.

Porosity: A dimensionless unit symbolized by ¢ and
equal to the ratio of the void volume to the total vol-
ume(V /V ) of the porous medium, or thefraction of
the total’volume of a porous medium occupied by void
space. It also may be considered the storage capacity
of amedium such asreservoir rock.

Power Law: A distribution of theformy = ¢ x".

Pressure: In general, the force pre unit area, F/A. In
mercury porosimetry, thisvalue (measurement) iscon-
sidered raw data, but actually isreduced to some extent
by head pressure correction and transducer offset cor-
rection. Nevertheless, it isthe most fundamental pres-
sure dataused in further datareduction. For every col-
lected pressure point, P;, there is a corresponding col-
lected volume data point V. In certain data reduction
routines, pressure datamay be derived by interpolation
between two measured pressure data points.

Pressure, Threshold: The pressure at which fluid first
percolates through a porous medium.

PSA: Units of absolute pressure. Pounds per Square
Inch Absolute. To convert PSIA to other units, use the
table bel ow.

To convert PSIA to.... multiply by..

atmosphere 0.06805
bar 0.06893
dynes/cm? 6.8927 x 10*

kg/cm? 7.0309 x 102
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mtorr or micron Hg 5171x 10%
Paor N/m? 6.8927 x 103
torr ormmHg 51.71

Radius/ Diameter: In mercury porosimetry, thisisthe
dimension of the circular (or other) pore model. For
every collected pressure point, thereisacorresponding
diameter obtained from the Washburn equation. Ra-
dius, when used, is abtained by dividing the cal culated
diameter by two.

Saturation Zone (Saturated Zone): The region of pore
space completely filled with fluid.

Sdlf-similarity: Having the same propertiesat different
Sizescales.

Snter: Inpowder metallurgy, to form acoherent bonded
mass by heat and pressure without melting.

Surface Energy: The energy per unit area of surface.
Compare with definitions of Surface Tension and In-
terfacial Energy.

Surface Tension: The internal force acting on the sur-
face that tendsto contract the surfaceinto aconfigura-
tion of minimum surfacearea. Itisdueto an unbalance
in molecular forces at the interface of two materials.
Thedifferencein molecular forces between aliquid and
solid determinesthe contact angle. Also, thework dwW
necessary to increase the surface area by dA. Also
known as interfacial tension or interfacial force. See
aso, Surface Energy and Interfacial Energy.

Tortuosity: Theratio of thelength of the path described
by the pore spaceto thelength of the shortest path across
aporous mass; the minimum valueis 1.

Tortuosity Factor: Tortuosity factor iscommonly used
inthe areaof heterogeneous catalysisand istheratio of
tortuosity to constriction, where constriction isafunc-
tion of theratio of cross-sectional areas of the conduit.

Transport Properties:. The propertiesof amaterial that
are associated with the transport of mass through the
material.

Unsaturated Zone: The region of the pore spacethat is
partly filled with fluid.

Viscosity: A measure of afluid’sability to resist defor-
mation. High viscosity fluids flow more slowly than
low viscosity fluids.

Volume: The size of a specific region in three-dimen-



sional space.

\olume, Bulk: Applied to finely divided samples and
granulated solid materials. Includesall pores, open and
closed, andincludesinterstitial space between particles.
Inregardto asingle solid specimen, often referred to as
envel ope volume; see envel ope volume.

\Volume, Cumulative: Inmercury porosimetry, thetotal
volume accumulated or accounted for over the range of
pressures or pore sizes. Considered raw data but may
have been blank-corrected. For every cumulative vol-
ume data point (V;) collected, thereisa corresponding
pressure point (P;) collected.

\olume, Differential Soecific: Theincremental specific
volume divided by the difference between the poresize
at one boundary of the increment and the pore size at
the other boundary. Incremental volumeisused rather
than cumulative because the calculation involves an
incremental step in pore size and volume intruded and
not the cumulative volume intruded at a specific pore
size.

\olume, Envelope: Thevolumeenclosedwithina‘form
fitting' surface that covers or envelops a single solid
specimen of material. It includes the volume of small
surface irregularities, open pores, and closed pores.
Compare with Volume, Bulk.

\Volume, Geometric isatheoretically idea volume, de-
rived from cal culationswith linear dimensions of regu-
lar shapessuch astheradii (R) and heights (h) of cylin-
ders (V=1iR?h), theradii of spheres (V =4/3 tR?), and
the lengths (1), heights (h), and widths (w) of rectangu-
lar cubes (V =Iwh). It does hot include surfaceirregu-
laritiesthat exist on “real” objects, nor pores or voids.

\Volume, Incremental: For a given range of pressure
and cumulative volume data pairs, (Pj,V;) to (P Vi )

incremental volumeis V-V (correspondmg to apres—
suredifferenceof P; - P;, WhICh convertstoasizerange
from Dj to D). In certaln data reduction routines, in-
cremental voJume data may be calculated using values
derived by interpol ation between two measured volume
data points.

\Volume, Skeletal (or True Volume): The volume of the
solid materia only. Skeletal volume may be determined
by mercury porosimetry or helium pycnometry and must
be performed on either non-porous materials or mate-
rials with no closed pores. The skeletal volume as de-
termined by mercury porosimetry and helium
pycnometry may differ because mercury cannot intrude
into small micropores, therefore including these voids

inthe reported skeletal volume.

Volume, Specific: The volume (intrusion or extrusion,
cumulative or incremental) divided by the sample
weight. Thisproduced unitsof volume per unit weight
and normalizes the data for convenient comparison to
similar analyses using different quantities of sample
material.

\olume, True: see Volume, Skeletal

Washburn Equation: A mathematical expression of
dynamic equilibrium between external forces tending
toforcealiquidinto acapillary of size R and theinter-
nal forces repelling entry into the capillary. Assuming
acircular cross-section for the capillary opening spanned
by a non-wetting liquid such a mercury, the equation
can be resolved in terms of the external pressure P and
the diameter of the capillary D, the smallest size into
which theliquid can beforced to enter at the prevailing
pressure.

Young's law: An expression of the relationship of the
solid-gas, solid-liquid, and liquid-gas interfacial ten-
sionsand the contact angle. Expressed mathematically
as
=y y cos6

\A/T‘iere? isthesolid-gasinterfacial tension, y | thesolid-
liquid ifferfacial tension,y the liquid gas’interfacial
tension, and B the contact alijle

Young-Laplace Equation: An expression of the
pressure differential (capillary pressure) acrossthe
liquid-gasinterface (the meniscus). At equilibrium,
Ap= y(l/R1 + 1/R2)

whereR and R aretheradii of curvature of the inter-
faceandy isthésurfacetension of theliquid-gasinter-
face. Within pores, the two radii are assumed to be
equal to the pore size, D/2. Therefore, capillary pres-
sure acrosstheinterface in apore of size D isgiven by

Ap=y(2/D +2/D)=4y/D.

NOTE: Theexpression for capillary pressureisderived
under the assumption that the fluids are in static equi-
librium, i.e. thereis no flow into or from the pore.
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